In-silico drug repurposing study: Amprenavir, enalaprilat, and plerixafor, potential drugs for destabilizing the SARS-CoV-2 S-protein-angiotensin-converting enzyme 2 complex

[Display omitted] •The COVID-19 pandemic is a great health public problem.•Through molecular docking, 147 drugs of DrugBank were evaluated in SP-ACE2 complex.•In-silico search using docking, molecular dynamics and umbrella sampling simulations.•Amprenavir, enalaprilat, plerixafor: best candidates to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Results in Chemistry 2021-01, Vol.3, p.100094-100094, Article 100094
Hauptverfasser: Buitrón-González, Ivonne, Aguilera-Durán, Giovanny, Romo-Mancillas, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •The COVID-19 pandemic is a great health public problem.•Through molecular docking, 147 drugs of DrugBank were evaluated in SP-ACE2 complex.•In-silico search using docking, molecular dynamics and umbrella sampling simulations.•Amprenavir, enalaprilat, plerixafor: best candidates to destabilize SP-ACE2 complex. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that leads to coronavirus disease (COVID-19) has put public health at risk in 2020. The spike protein (SP) in SARS-CoV-2 is primarily responsible for the attachment and entry of the virus into the cell, which binds to the angiotensin-converting enzyme 2 (ACE2). Owing to the lack of an effective therapy, drug repositioning is an opportunity to search for molecules with pharmacological potential for the treatment of COVID-19. In this study, three candidates with the potential to destabilize the SP-ACE2 complex are reported. Through molecular docking, 147 drugs were evaluated and their possible binding sites in the interface region of the SP-ACE2 complex and the SP of SARS-CoV-2 were identified. The five best candidate molecules were selected for molecular dynamics studies to observe changes in interactions between SP-ACE2 and ligands with the SP-ACE2 complex. Using umbrella sampling molecular dynamics simulations, the binding energy of SP with ACE2 (−29.58 kcal/mol) without ligands, and in complex with amprenavir (−20.13 kcal/mol), enalaprilat (–23.84 kcal/mol), and plerixafor (−19.72 kcal/mol) were calculated. These drugs are potential candidates for the treatment of COVID-19 as they destabilize the SP-ACE2 complex; the binding energy of SP is decreased in the presence of these drugs and may prevent the virus from entering the cell. Plerixafor is the drug with the greatest potential to destabilize the SP-ACE2 complex, followed by amprenavir and enalaprilat; thus, these three drugs are proposed for future in vitro and in vivo evaluations.
ISSN:2211-7156
2211-7156
DOI:10.1016/j.rechem.2020.100094