Can MERRA-2 Reanalysis Data Reproduce the Three-Dimensional Evolution Characteristics of a Typical Dust Process in East Asia? A Case Study of the Dust Event in May 2017
This study used the MERRA-2 reanalysis dataset and ground-based and satellite observational data to comprehensively analyze a typical dust storm event in east Asia on 2–7 May 2017 which engulfed most of China as well as ocean and Japan, and explore the accuracy and comprehensiveness of the MERRA-2 d...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2020-03, Vol.12 (6), p.902 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study used the MERRA-2 reanalysis dataset and ground-based and satellite observational data to comprehensively analyze a typical dust storm event in east Asia on 2–7 May 2017 which engulfed most of China as well as ocean and Japan, and explore the accuracy and comprehensiveness of the MERRA-2 dataset in the analysis of dust processes. The results of comparison show that the description of the spatiotemporal distribution and evolution of the dust aerosols in the dust event using the MERRA-2 data is consistent with the data of AERONET, National Urban Air Quality Real-time Publishing Platform and Hamawari-8. Gobi Deserts was the most influential source area of this dust event with the highest emissions reaching 1.9 × 106 μg/m3. The vertical motion of the atmosphere can lift dust from the source area above 500 hPa. There were low-pressure troughs at 500 and 850 hPa and the winds behind and in front of the trough led to the high-altitude, long-distance transport of dust. Dust gradually affected the northwest China, north China, northeast China, and even the ocean and Japan on 2–7 May. This study demonstrates that although there is some uncertainty about the source of dust emission in the MERRA-2 model, the data accurately simulated the evolution of the dust event and analyze it comprehensively, while the accuracy of simulating the long-term evolution of dust requires further evaluation. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs12060902 |