3D Polymer-Based 1 × 4 MMI Splitter

Due to the increasing trend of photonic device miniaturisation, there is also an increased need for optical splitting in a small volume. We propose a smart solution to split light in three dimensions (3D). A 3D optical splitter based on multimode interference (MMI) for the wavelength of 1550 nm is h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2022-05, Vol.12 (10), p.1749
Hauptverfasser: Mizera, Tomas, Gaso, Peter, Pudis, Dusan, Ziman, Martin, Kuzma, Anton, Goraus, Matej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the increasing trend of photonic device miniaturisation, there is also an increased need for optical splitting in a small volume. We propose a smart solution to split light in three dimensions (3D). A 3D optical splitter based on multimode interference (MMI) for the wavelength of 1550 nm is here designed, simulated, fabricated and optimised for splitting at 1550 nm. We focus also on the possibility of its direct integration on an optical fibre. The design is focused on the use of 3D laser lithography based on the direct laser writing (DLW) process. The output characteristics are investigated by near-field measurement, where we confirm the successful 1 × 4 splitting on a 158 µm long MMI splitter.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano12101749