The impact of host rock geochemistry on bacterial community structure in oligotrophic cave environments

Despite extremely starved conditions, caves contain surprisingly diverse microbial communities. Our research is geared toward understanding what ecosystems drivers are responsible for this high diversity. To asses the effect of rock fabric and mineralogy, we carried out a comparative geomicrobiology...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of speleology 2007-07, Vol.36 (2), p.93-104
Hauptverfasser: Barton, Hazel, Taylor, Nicholas, Kreate, Michael, Springer, Austin, Oehrle, Stuart, Bertog, Janet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite extremely starved conditions, caves contain surprisingly diverse microbial communities. Our research is geared toward understanding what ecosystems drivers are responsible for this high diversity. To asses the effect of rock fabric and mineralogy, we carried out a comparative geomicrobiology study within Carlsbad Cavern, New Mexico, USA. Samples were collected from two different geologic locations within the cave: WFl in the Massive Member of the Capitan Formation and sF88 in the calcareous siltstones of the Yates Formation. We examined the organic content at each location using liquid chromatography mass spectroscopy and analyzed microbial community structure using molecular phylogenetic analyses. In order to assess whether microbial activity was leading to changes in the bedrock at each location, the samples were also examined by petrology, X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX). Our results suggest that on the chemically complex Yates Formation (sF88), the microbial community was significantly more diverse than on the limestone surfaces of the Capitan (WF1), despite a higher total number of cells on the latter. Further, the broader diversity of bacterial species at sF88 reflected a larger range of potential metabolic capabilities, presumably due to opportunities to use ions within the rock as nutrients and for chemolithotrophic energy production. The use of these ions at sF88 is supported by the formation of a corrosion residue, presumably through microbial scavenging activities. Our results suggest that rock fabric and mineralogy may be an important driver of ecosystem function and should be carefully reviewed when carrying out microbial community analysis in cave environments.
ISSN:0392-6672
1827-806X
DOI:10.5038/1827-806X.36.2.5