Application of latent growth modeling to identify different working life trajectories: the case of the Spanish WORKss cohort
Objective The aim of this study was to describe the application of latent class growth analysis (LCGA) to identify different working life trajectories (WLT) using employed working time by year as a repeated measure. Methods Trajectories are estimated using LCGA, which considers all individuals withi...
Gespeichert in:
Veröffentlicht in: | Scandinavian journal of work, environment & health environment & health, 2017-01, Vol.43 (1), p.42-49 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objective The aim of this study was to describe the application of latent class growth analysis (LCGA) to identify different working life trajectories (WLT) using employed working time by year as a repeated measure. Methods Trajectories are estimated using LCGA, which considers all individuals within a trajectory to be homogeneous. The methodology was applied to a subsample of the Spanish WORKing life Social Security (WORKss) cohort, limited to persons born 1956–1965 (N=247 475). The number of days worked per year is used as a repeated measure across 32 time points (1981–2013). Results According to the model-fit results and further guided by expert knowledge, a four WTL model was selected as the optimal approach: WLT1 or "high labor force participation" (N=99 591; 40.2%); WLT2 or "decreased labor force participation" (N= 22 846; 9.2%); WLT3 or "increased labor force participation" (N=59 213; 23.9%); and WLT4 or "low labor force participation" (N=65 827; 26.6%). WLT1 consisted mainly of men with more years of work experience (>19 years) while WLT4 was mainly composed by women with |
---|---|
ISSN: | 0355-3140 1795-990X |
DOI: | 10.5271/sjweh.3606 |