Polybenzimidazole Confined in Semi-Interpenetrating Networks of Crosslinked Poly (Arylene Ether Ketone) for High Temperature Proton Exchange Membrane

As a traditional high-temperature proton exchange membrane (HT-PEM), phosphoric acid (PA)-doped polybenzimidazole (PBI) is often subject to severe mechanical strength deterioration owing to the "plasticizing effect" of a large amount of PA. In order to address this issue, we fabricated the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2022-02, Vol.12 (5), p.773
Hauptverfasser: Qu, Erli, Jiang, Junqiao, Xiao, Min, Han, Dongmei, Huang, Sheng, Huang, Zhiheng, Wang, Shuanjin, Meng, Yuezhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a traditional high-temperature proton exchange membrane (HT-PEM), phosphoric acid (PA)-doped polybenzimidazole (PBI) is often subject to severe mechanical strength deterioration owing to the "plasticizing effect" of a large amount of PA. In order to address this issue, we fabricated the HT-PEMs with a crosslinked network of poly (arylene ether ketone) to confine polybenzimidazole in semi-interpenetration network using self-synthesized amino-terminated PBI (PBI-4NH ) as a crosslinker. Compared with the pristine linear poly [2,2'-(p-oxdiphenylene)-5,5'-benzimidazole] (OPBI) membrane, the designed HT-PEMs (semi-IPN/ PBI), in the semi-IPN means that the membranes with a semi-interpenetration structure and represent the combined weight percentage of PBI-4NH and OPBI. In addition, they also demonstrate an enhanced anti-oxidative stability and superior mechanical properties without the sacrifice of conductivity. The semi-IPN/70PBI exhibits a higher proton conductivity than OPBI at temperatures ranging from 80 to 180 °C. The HT-PEMFC with semi-IPN/70PBI exhibits excellent H /O single cell performance with a power density of 660 mW cm at 160 °C with flow rates of 250 and 500 mL min for dry H and O at a backpressure of 0.03 MPa, which is 18% higher than that of OPBI (561 mW cm ) under the same test conditions. The results indicate that the introduction of PBI containing crosslinked networks is a promising approach to improve the comprehensive performance of HT-PEMs.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano12050773