A Spatial–Spectral Joint Attention Network for Change Detection in Multispectral Imagery

Change detection determines and evaluates changes by comparing bi-temporal images, which is a challenging task in the remote-sensing field. To better exploit the high-level features, deep-learning-based change-detection methods have attracted researchers’ attention. Most deep-learning-based methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2022-07, Vol.14 (14), p.3394
Hauptverfasser: Zhang, Wuxia, Zhang, Qinyu, Liu, Shuo, Pan, Xiaoying, Lu, Xiaoqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Change detection determines and evaluates changes by comparing bi-temporal images, which is a challenging task in the remote-sensing field. To better exploit the high-level features, deep-learning-based change-detection methods have attracted researchers’ attention. Most deep-learning-based methods only explore the spatial–spectral features simultaneously. However, we assume the key spatial-change areas should be more important, and attention should be paid to the specific bands which can best reflect the changes. To achieve this goal, we propose the spatial–spectral joint attention network (SJAN). Compared with traditional methods, SJAN introduces the spatial–spectral attention mechanism to better explore the key changed areas and the key separable bands. To be more specific, a novel spatial-attention module is designed to extract the spatially key regions first. Secondly, the spectral-attention module is developed to adaptively focus on the separable bands of land-cover materials. Finally, a novel objective function is proposed to help the model to measure the similarity of learned spatial–spectral features from both spectrum amplitude and angle perspectives. The proposed SJAN is validated on three benchmark datasets. Comprehensive experiments have been conducted to demonstrate the effectiveness of the proposed SJAN.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs14143394