The marker effects of a single-step random regression model for 4 test-day traits in German Holsteins

The single-step genomic model has become the golden standard for routine evaluation in livestock species, such as Holstein dairy cattle. The single-step genomic model with direct estimation of marker effects has been proven to be efficient in accurately accounting for millions of genotype records. F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dairy science 2024-01, Vol.107 (1), p.423-437
Hauptverfasser: Alkhoder, H., Liu, Z., Reents, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The single-step genomic model has become the golden standard for routine evaluation in livestock species, such as Holstein dairy cattle. The single-step genomic model with direct estimation of marker effects has been proven to be efficient in accurately accounting for millions of genotype records. For diverse applications including frequent genomic evaluation updates on a weekly basis, estimates of the marker effects from the single-step evaluations play a central role in genomic prediction. In this study we focused on exploring the marker effect estimates from the single-step evaluation. Phenotypic, genotypic, and pedigree data were taken from the official evaluation for German dairy breeds in April 2021. A multilactation random regression test-day model was applied to more than 242 million test-day records separately for 4 traits: milk, fat, and protein yields, and somatic cell scores (SCS). Approximately one million genotyped Holstein animals were considered in the single-step genomic evaluations including ∼21 million animals in pedigree. Deregressed multiple across-country breeding values of Holstein bulls having daughters outside Germany were integrated into the national test-day data to increase the reliability of genomic breeding values. To assess the stability and bias of the marker effects of the single-step model, test-day records of the last 4 yr were deleted, and the integrated bulls born in the last 4 yr were truncated from the complete phenotypic dataset. Estimates of the marker effects were shown to be highly correlated, with correlations ∼0.9, between the full and truncated evaluations. Regression slope values of the marker-effect estimates from the full on the truncated evaluations were all close to their expected value, being ∼1.03. Calculated using random regression coefficients of the marker effect estimates, drastically different shapes of the genetic lactation curve were seen for 2 markers on chromosome 14 for the 4 test-day traits. The contribution of individual chromosomes to the total additive genetic variances seemed to follow the polygenic inheritance mode for protein yield and SCS. However, chromosome 14 was found to make an exceptionally large contribution to the total additive genetic variance for milk and fat yields because of markers near the major gene DGAT1. For the first lactation test-day traits, we obtained ∼0 correlations of chromosomal direct genomic values between any pair of the chromosomes; no spurious correlations
ISSN:0022-0302
1525-3198
DOI:10.3168/jds.2023-23793