Differentially private false discovery rate control
Differential privacy provides a rigorous framework for privacy-preserving data analysis. This paper proposes the first differentially private procedure for controlling the false discovery rate (FDR) in multiple hypothesis testing. Inspired by the Benjamini-Hochberg procedure (BHq), our approach is t...
Gespeichert in:
Veröffentlicht in: | The journal of privacy and confidentiality 2021-09, Vol.11 (2) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Differential privacy provides a rigorous framework for privacy-preserving data analysis. This paper proposes the first differentially private procedure for controlling the false discovery rate (FDR) in multiple hypothesis testing. Inspired by the Benjamini-Hochberg procedure (BHq), our approach is to first repeatedly add noise to the logarithms of the p-values to ensure differential privacy and to select an approximately smallest p-value serving as a promising candidate at each iteration; the selected p-values are further supplied to the BHq and our private procedure releases only the rejected ones. Moreover, we develop a new technique that is based on a backward submartingale for proving FDR control of a broad class of multiple testing procedures, including our private procedure, and both the BHq step- up and step-down procedures. As a novel aspect, the proof works for arbitrary dependence between the true null and false null test statistics, while FDR control is maintained up to a small multiplicative factor. |
---|---|
ISSN: | 2575-8527 2575-8527 |
DOI: | 10.29012/jpc.755 |