The transcription factor STAT5 catalyzes Mannich ligation reactions yielding inhibitors of leukemic cell proliferation

Protein-templated fragment ligations have been established as a powerful method for the assembly and detection of optimized protein ligands. Initially developed for reversible ligations, the method has been expanded to irreversible reactions enabling the formation of super-additive fragment combinat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-01, Vol.10 (1), p.66-66, Article 66
Hauptverfasser: Wong, Ee Lin, Nawrotzky, Eric, Arkona, Christoph, Kim, Boo Geun, Beligny, Samuel, Wang, Xinning, Wagner, Stefan, Lisurek, Michael, Carstanjen, Dirk, Rademann, Jörg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Protein-templated fragment ligations have been established as a powerful method for the assembly and detection of optimized protein ligands. Initially developed for reversible ligations, the method has been expanded to irreversible reactions enabling the formation of super-additive fragment combinations. Here, protein-induced Mannich ligations are discovered as a biocatalytic reaction furnishing inhibitors of the transcription factor STAT5. STAT5 protein catalyzes multicomponent reactions of a phosphate mimetic, formaldehyde, and 1 H -tetrazoles yielding protein ligands with greatly increased binding affinity and ligand efficiency. Reactions are induced under physiological conditions selectively by native STAT5 but not by other proteins. Formation of ligation products and (auto-)inhibition of the reaction are quantified and the mechanism is investigated. Inhibitors assembled by STAT5 block specifically the phosphorylation of this protein in a cellular model of acute myeloid leukemia (AML), DNA-binding of STAT5 dimers, expression of downstream targets of the transcription factor, and the proliferation of cancer cells in mice. The oncogene STAT5 is involved in cancer cell proliferation. Here, the authors use STAT5 protein to assemble its own small molecule inhibitors via Mannich ligation (three-component-reactions) and show that the resultant ligands can inhibit the proliferation of cancer cells in a mouse model.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-07923-2