Distance- and Momentum-Based Symbolic Aggregate Approximation for Highly Imbalanced Classification

Time-series representation is the most important task in time-series analysis. One of the most widely employed time-series representation method is symbolic aggregate approximation (SAX), which converts the results from piecewise aggregate approximation to a symbol sequence. SAX is a simple and effe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2022-07, Vol.22 (14), p.5095
Hauptverfasser: Yang, Dong-Hyuk, Kang, Yong-Shin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Time-series representation is the most important task in time-series analysis. One of the most widely employed time-series representation method is symbolic aggregate approximation (SAX), which converts the results from piecewise aggregate approximation to a symbol sequence. SAX is a simple and effective method; however, it only focuses on the mean value of each segment in the time-series. Here, we propose a novel time-series representation method—distance- and momentum-based symbolic aggregate approximation (DM-SAX)—that can secure time-series distributions by calculating the perpendicular distance from the time-axis to each data point and consider the time-series trend by adding a momentum factor reflecting the direction of previous data points. Experimental results for 29 highly imbalanced classification problems on the UCR datasets revealed that DM-SAX affords the optimal area under the curve (AUC) among competing time-series representation methods (SAX, extreme-SAX, overlap-SAX, and distance-based SAX). We statistically verified that performance improvements resulted in significant differences in the rankings. In addition, DM-SAX yielded the optimal AUC for real-world wire cutting and crimping process dataset. Meaningful data points such as outliers could be identified in a time-series outlier detection framework via the proposed method.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22145095