Stability Analysis of Rock Slope Based on Improved Principal Component Analysis Model: Taking Fuwushan Slope as an Example
Aiming at the problems of low accuracy, low efficiency, and many parameters required in the current calculation of rock slope stability, a prediction model of rock slope stability is proposed, which combines principal component analysis (PCA) and relevance vector machine (RVM). In this model, PCA is...
Gespeichert in:
Veröffentlicht in: | Geofluids 2021-08, Vol.2021, p.1-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aiming at the problems of low accuracy, low efficiency, and many parameters required in the current calculation of rock slope stability, a prediction model of rock slope stability is proposed, which combines principal component analysis (PCA) and relevance vector machine (RVM). In this model, PCA is used to reduce the dimension of several influencing factors, and four independent principal component variables are selected. With the help of RVM mapping the nonlinear relationship between the safety factor of slope stability and the principal component variables, the prediction model of rock slope stability based on PCA-RVM is established. The results show that under the same sample, the maximum relative error of the PCA-RVM model is only 1.26%, the average relative error is 0.95%, and the mean square error is 0.011, which is far lower than that of the RVM model and the GEP model. By comparing the results of traditional calculation method and PCA-RVM model, it can be concluded that the PCA-RVM model has the characteristics of high prediction accuracy, small discreteness, and high reliability, which provides reference value for accurately predicting the stability of rock slope. |
---|---|
ISSN: | 1468-8115 1468-8123 |
DOI: | 10.1155/2021/9015065 |