Detection of QTL for High-Temperature Tolerance in Rice Using a High-Density Bin Map

Rice is sensitive to high-temperature stress during almost all stages of growth and development. High-temperature stress has become one of the main factors restricting high yield and superior quality of rice. In this study, recombinant inbred lines (RILs) derived from an indica rice cross between tw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agronomy (Basel) 2023-06, Vol.13 (6), p.1582
Hauptverfasser: Huang, Derun, Zhang, Zhenhua, Fan, Yeyang, Tang, Shaoqing, Zhuang, Jieyun, Zhu, Yujun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rice is sensitive to high-temperature stress during almost all stages of growth and development. High-temperature stress has become one of the main factors restricting high yield and superior quality of rice. In this study, recombinant inbred lines (RILs) derived from an indica rice cross between two restorer lines were planted in two years. One sowing date was applied in 2019, and four sowing dates were set in 2020 according to the period of local high temperatures in recent years. Two traits closely related to high-temperature tolerance, heading date (HD), and spikelet fertility (SF) were measured. In each trial, the HD showed a bimodal distribution, whereas SF had a continuous and left-skewed distribution. QTL analysis was performed using a high-density bin map. For HD, a total of six QTL were detected. All of them correspond in position to the cloned genes, among which qHD8 in the DTH8/Ghd8 region showed the largest genetic effect. For SF, a total of eight QTL were detected. Five of them, qSF1, qSF2, qSF3.1, qSF3.2, and qSF8, showed high-temperature tolerance and had an important potential in rice breeding.
ISSN:2073-4395
2073-4395
DOI:10.3390/agronomy13061582