Invariant Subspaces of Short Pulse-Type Equations and Reductions

In this paper, we extend the invariant subspace method to a class of short pulse-type equations. Complete classification results with invariant subspaces from 2 to 5 dimensions are provided. The key step is to take subspaces of solutions of linear ordinary differential equations as invariant subspac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2024-06, Vol.16 (6), p.760
Hauptverfasser: Wang, Guo-Hua, Pang, Jia-Fu, Jin, Yong-Yang, Ren, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we extend the invariant subspace method to a class of short pulse-type equations. Complete classification results with invariant subspaces from 2 to 5 dimensions are provided. The key step is to take subspaces of solutions of linear ordinary differential equations as invariant subspaces that nonlinear operators admit. Some concrete examples and corresponding reduced systems are presented to illustrate this method.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym16060760