Meander Thin-Film Biosensor Fabrication to Investigate the Influence of Structural Parameters on the Magneto-Impedance Effect

Thin-film magneto-impedance (MI) biosensors have attracted significant attention due to their high sensitivity and easy miniaturization. However, further improvement is required to detect weak biomagnetic signals. Here, we report a meander thin-film biosensor preparation to investigate the fabricati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-09, Vol.21 (19), p.6514
Hauptverfasser: Sayad, Abkar, Uddin, Shah Mukim, Chan, Jianxiong, Skafidas, Efstratios, Kwan, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thin-film magneto-impedance (MI) biosensors have attracted significant attention due to their high sensitivity and easy miniaturization. However, further improvement is required to detect weak biomagnetic signals. Here, we report a meander thin-film biosensor preparation to investigate the fabrication parameters influencing the MI effect. Specifically, we hypothesized that an optimal film thickness and sensing area size ratio could be achieved to obtain a maximum MI ratio. A meander multilayer MI biosensor based on a NiFe/Cu/NiFe thin-film was designed and fabricated into 3-, 6-, and 9-turn models with film thicknesses of 3 µm and 6 µm. The 9-turn biosensor resembled the largest sensing area, while the 3- and 6-turn biosensors were designed with identical sensing areas. The results indicated that the NiFe film thickness of 6 µm with a sensing area size of 14.4 mm2 resembling a 9-turn MI biosensor is the optimal ratio yielding the maximum MI ratio of 238%, which is 70% larger than the 3- and 6-turn structures. The 3- and 6-turn MI biosensors exhibited similar characteristics where the MI ratio peaked at a similar value. Our results suggest that the MI ratio can be increased by increasing the sensing area size and film thickness rather than the number of turns. We showed that an optimal film thickness to sensing area size ratio is required to obtain a high MI ratio. Our findings will be useful for designing highly sensitive MI biosensors capable of detecting low biomagnetic signals.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21196514