Potential Use of Wearable Sensors to Assess Cumulative Kidney Trauma in Endurance Off-Road Running

(1) Background: This study aimed to explore wearable sensors' potential use to assess cumulative mechanical kidney trauma during endurance off-road running. (2) Methods: 18 participants (38.78 ± 10.38 years, 73.24 ± 12.6 kg, 172.17 ± 9.48 cm) ran 36 k off-road race wearing a Magnetic, Angular R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional morphology and kinesiology 2020-12, Vol.5 (4), p.93-0
Hauptverfasser: Rojas-Valverde, Daniel, Timón, Rafael, Sánchez-Ureña, Braulio, Pino-Ortega, José, Martínez-Guardado, Ismael, Olcina, Guillermo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:(1) Background: This study aimed to explore wearable sensors' potential use to assess cumulative mechanical kidney trauma during endurance off-road running. (2) Methods: 18 participants (38.78 ± 10.38 years, 73.24 ± 12.6 kg, 172.17 ± 9.48 cm) ran 36 k off-road race wearing a Magnetic, Angular Rate and Gravity (MARG) sensor attached to their lower back. Impacts in g forces were recorded throughout the race using the MARG sensor. Two blood samples were collected immediately pre- and post-race: serum creatinine (sCr) and albumin (sALB). (3) Results: Sixteen impact variables were grouped using principal component analysis in four different principal components (PC) that explained 90% of the total variance. The 4th PC predicted 24% of the percentage of change (∆%) of sCr and the 3rd PC predicted the ∆% of sALB by 23%. There were pre- and post-race large changes in sCr and sALB ( ≤ 0.01) and 33% of participants met acute kidney injury diagnosis criteria. (4) Conclusions: The data related to impacts could better explain the cumulative mechanical kidney trauma during mountain running, opening a new range of possibilities using technology to better understand how the number and magnitude of the g-forces involved in off-road running could potentially affect kidney function.
ISSN:2411-5142
2411-5142
DOI:10.3390/jfmk5040093