MultiFuzz: A Coverage-Based Multiparty-Protocol Fuzzer for IoT Publish/Subscribe Protocols

The publish/subscribe model has gained prominence in the Internet of things (IoT) network, and both Message Queue Telemetry Transport (MQTT) and Constrained Application Protocol (CoAP) support it. However, existing coverage-based fuzzers may miss some paths when fuzzing such publish/subscribe protoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2020-09, Vol.20 (18), p.5194
Hauptverfasser: Zeng, Yingpei, Lin, Mingmin, Guo, Shanqing, Shen, Yanzhao, Cui, Tingting, Wu, Ting, Zheng, Qiuhua, Wang, Qiuhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The publish/subscribe model has gained prominence in the Internet of things (IoT) network, and both Message Queue Telemetry Transport (MQTT) and Constrained Application Protocol (CoAP) support it. However, existing coverage-based fuzzers may miss some paths when fuzzing such publish/subscribe protocols, because they implicitly assume that there are only two parties in a protocol, which is not true now since there are three parties, i.e., the publisher, the subscriber and the broker. In this paper, we propose MultiFuzz, a new coverage-based multiparty-protocol fuzzer. First, it embeds multiple-connection information in a single input. Second, it uses a message mutation algorithm to stimulate protocol state transitions, without the need of protocol specifications. Third, it uses a new desockmulti module to feed the network messages into the program under test. desockmulti is similar to desock (Preeny), a tool widely used by the community, but it is specially designed for fuzzing and is 10x faster. We implement MultiFuzz based on AFL, and use it to fuzz two popular projects Eclipse Mosquitto and libCoAP. We reported discovered problems to the projects. In addition, we compare MultiFuzz with AFL and two state-of-the-art fuzzers, MOPT and AFLNET, and find it discovering more paths and crashes.
ISSN:1424-8220
1424-8220
DOI:10.3390/s20185194