The particle surface of spinning test particles

In this work, inspired by the definition of the photon surface given by Claudel, Virbhadra, and Ellis, we give an alternative quasi-local definition to study the circular orbits of single-pole particles. This definition does not only apply to photons but also to massive point particles. For the case...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. C, Particles and fields Particles and fields, 2023-09, Vol.83 (9), p.833-9, Article 833
Hauptverfasser: Song, Yong, Cen, Yiting, Tang, Leilei, Hu, Jiabao, Diao, Kai, Zhao, Xiaofeng, Shi, Shunping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, inspired by the definition of the photon surface given by Claudel, Virbhadra, and Ellis, we give an alternative quasi-local definition to study the circular orbits of single-pole particles. This definition does not only apply to photons but also to massive point particles. For the case of photons in spherically symmetric spacetime, it will give a photon surface equivalent to the result of Claudel, Virbhadra, and Ellis. Meanwhile, in general static and stationary spacetime, this definition can be regarded as a quasi-local form of the effective potential method. However, unlike the effective potential method which can not define the effective potential in dynamical spacetime, this definition can be applied to dynamical spacetime. Further, we generalize this definition directly to the case of pole–dipole particles. In static spherical symmetry spacetime, we verify the correctness of this generalization by comparing the results obtained by the effective potential method.
ISSN:1434-6052
1434-6044
1434-6052
DOI:10.1140/epjc/s10052-023-11970-5