Inter-Comparison of Radon Measurements from a Commercial Beta-Attenuation Monitor and ANSTO Dual Flow Loop Monitor
Radon (Rn) is a radioactive, colourless, odourless, noble gas that decays rapidly. It’s most stable isotope, 222Rn, has a half-life of around 3.8 days. Atmospheric radon measurements play an important role in understanding our atmospheric environments. Naturally occurring radon can be used as an atm...
Gespeichert in:
Veröffentlicht in: | Atmosphere 2023-09, Vol.14 (9), p.1333 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Radon (Rn) is a radioactive, colourless, odourless, noble gas that decays rapidly. It’s most stable isotope, 222Rn, has a half-life of around 3.8 days. Atmospheric radon measurements play an important role in understanding our atmospheric environments. Naturally occurring radon can be used as an atmospheric tracer for airmass tracking, to assist in modelling boundary layer development, and is important for understanding background radiation levels and personal exposure to natural radiation. The daughter products from radon decay also play an important role when measuring fine particle pollution using beta-attenuation monitors (BAM). Beta radiation from the 222Rn decay chain interferes with BAM measurements of fine particles; thus, some BAMs incorporate radon measurements into their sampling systems. BAMs are ubiquitous in air quality monitoring networks globally and present a hitherto unexplored source of dense, continuous radon measurements. In this paper, we compare in situ real world 222Rn measurements from a high quality ANSTO dual flow loop, dual filter radon detector, and the radon measurements made by a commercial BAM instrument (Thermo 5014i). We find strong correlations between systems for hourly measurements (R2 = 0.91), daily means (R2 = 0.95), hour of day (R2 = 0.72–0.94), and by month (R2 = 0.83–0.94). The BAM underestimates radon by 22–39%; however, the linear response of the BAM measurements implies that they could be corrected to reflect the ANSTO standard measurements. Regardless, the radon measurements from BAMs could be used with correction to estimate local mixed layer development. Though only a 12-month study at a single location, our results suggest that radon measurements from BAMs can complement more robust measurements from standard monitors, augment radon measurements across broad regions of the world, and provide useful information for studies using radon as a tracer, particularly for boundary layer development and airmass identification. |
---|---|
ISSN: | 2073-4433 2073-4433 |
DOI: | 10.3390/atmos14091333 |