Datascape: exploring heterogeneous dataspace

Data science is a powerful field for gaining insights, comparing, and predicting behaviors from datasets. However, the diversity of methods and hypotheses needed to abstract a dataset exhibits a lack of genericity. Moreover, the shape of a dataset, which structures its contained information and unce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-04, Vol.14 (1), p.7041-7041, Article 7041
Hauptverfasser: Rolland, Jakez, Boutin, Ronan, Eveillard, Damien, Delahaye, Benoit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Data science is a powerful field for gaining insights, comparing, and predicting behaviors from datasets. However, the diversity of methods and hypotheses needed to abstract a dataset exhibits a lack of genericity. Moreover, the shape of a dataset, which structures its contained information and uncertainties, is rarely considered. Inspired by state-of-the-art manifold learning and hull estimations algorithms, we propose a novel framework, the datascape, that leverages topology and graph theory to abstract heterogeneous datasets. Built upon the combination of a nearest neighbor graph, a set of convex hulls, and a metric distance that respects the shape of the data, the datascape allows exploration of the dataset’s underlying space. We show that the datascape can uncover underlying functions from simulated datasets, build predictive algorithms with performance close to state-of-the-art algorithms, and reveal insightful geodesic paths between points. It demonstrates versatility through ecological, medical, and simulated data use cases.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-52493-7