Synthesis and Application of Egg Shell Biochar for As(V) Removal from Aqueous Solutions

Arsenic in water bodies has increased to toxic levels and become a major issue worldwide. Among various treatment methods, the removal of As from polluted water with low-cost and environmental-friendly sorbents such as biochar is considered a promising technique nowadays. In a recent experiment, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2022-04, Vol.12 (4), p.431
Hauptverfasser: Akram, Asma, Muzammal, Shazma, Shakoor, Muhammad Bilal, Ahmad, Sajid Rashid, Jilani, Asim, Iqbal, Javed, Al-Sehemi, Abdullah G., Kalam, Abul, Aboushoushah, Samia Faisal O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Arsenic in water bodies has increased to toxic levels and become a major issue worldwide. Among various treatment methods, the removal of As from polluted water with low-cost and environmental-friendly sorbents such as biochar is considered a promising technique nowadays. In a recent experiment, the treatment of As-contaminated water using egg shell biochar was studied. Various parameters affecting the sorption, such as pH, contact time, sorbent dose, As(V) concentration and the effects of anions, were also examined. The results revealed that at a pH of 4.5, a maximum sorption of 6.3 mg g−1 was observed, and the As(V) removal was 96% with an As concentration of 0.6 mg L−1 and a sorbent dose of 0.9 g L−1. At a contact time of 2 h (120 min), a maximum sorption of 6.3 mg g−1 was noted with a removal percentage of 96%. The sorption of As(V) was obtained at an optimal sorbent dose of 0.9 g L−1. The SEM-EDS data illustrated that biochar consisted of a large number of active sites for As(V) adsorption, and As appeared on the biochar surface after the sorption experiments. Moreover, XPS analyses also confirmed the presence of As(V) on the biochar surface after treatment with As-contaminated water. In a nutshell, the results of this study demonstrate that egg shell biochar has notable efficiency in the removal of As(V) from aqueous solution and that egg shell biochar could be a cost-effective and environmental-friendly sorbent for the treatment of As(V)-contaminated water, specifically in developing countries.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal12040431