TERT and TET2 Genetic Variants Affect Leukocyte Telomere Length and Clinical Outcome in Coronary Artery Disease Patients-A Possible Link to Clonal Hematopoiesis

Inherited and acquired mutations in hematopoietic stem cells can cause clonal expansion with increased risk of cardiovascular disease (CVD), a condition known for the clonal hematopoiesis of indeterminate potential (CHIP). Inherited genetic variants in two CHIP-associated genome loci, the telomerase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedicines 2022-08, Vol.10 (8), p.2027
Hauptverfasser: Opstad, Trine B, Solheim, Svein, Pettersen, Alf-Åge R, Kalstad, Are A, Arnesen, Harald, Seljeflot, Ingebjørg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inherited and acquired mutations in hematopoietic stem cells can cause clonal expansion with increased risk of cardiovascular disease (CVD), a condition known for the clonal hematopoiesis of indeterminate potential (CHIP). Inherited genetic variants in two CHIP-associated genome loci, the telomerase gene telomerase enzyme reverse transcriptase (TERT) (rs7705526) and the epigenetic regulator ten−eleven translocation 2 (TET2) (rs2454206), were investigated in 1001 patients with stable coronary artery disease (CAD) (mean age 62 years, 22% women), with regards to cardiovascular outcome, comorbidities, and leukocyte telomere length. Over 2 years, mutated TERT increased the risk two-fold for major clinical events (MACEs) in all patients (p = 0.004), acute myocardial infarction (AMI) in male patients (p = 0.011), and stroke in female patients (p < 0.001). Mutated TET2 correlated with type 2 diabetes (p < 0.001), the metabolic syndrome (p = 0.002), as well as fasting glucose, HbA1c, and shorter telomeres (p = 0.032, p = 0.003, and p = 0.016, respectively). In conclusion, our results from stable CAD patients highlight TERTs’ role in CVD, and underline TET2s’ role in the epigenetic regulation of lifestyle-related diseases.
ISSN:2227-9059
2227-9059
DOI:10.3390/biomedicines10082027