Global regularity in Orlicz-Morrey spaces of solutions to nondivergence elliptic equations with VMO coefficients
We show continuity in generalized Orlicz-Morrey spaces $M_{\Phi,\varphi}(\mathbb{R}^n)$ of sublinear integral operators generated by Calderon-Zygmund operator and their commutators with BMO functions. The obtained estimates are used to study global regularity of the solution of the Dirichlet problem...
Gespeichert in:
Veröffentlicht in: | Electronic journal of differential equations 2018-05, Vol.2018 (110), p.1-24 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show continuity in generalized Orlicz-Morrey spaces $M_{\Phi,\varphi}(\mathbb{R}^n)$ of sublinear integral operators generated by Calderon-Zygmund operator and their commutators with BMO functions. The obtained estimates are used to study global regularity of the solution of the Dirichlet problem for linear uniformly elliptic operator $\mathcal{L}=\sum_{i,j=1}^n a^{ij}(x)D_{ij}$ with discontinuous coefficients. We show that $\mathcal{L} u\in M_{\Phi,\varphi}$ implies the second-order derivatives belong to $M_{\Phi,\varphi}$. |
---|---|
ISSN: | 1072-6691 |