Global regularity in Orlicz-Morrey spaces of solutions to nondivergence elliptic equations with VMO coefficients

We show continuity in generalized Orlicz-Morrey spaces $M_{\Phi,\varphi}(\mathbb{R}^n)$ of sublinear integral operators generated by Calderon-Zygmund operator and their commutators with BMO functions. The obtained estimates are used to study global regularity of the solution of the Dirichlet problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of differential equations 2018-05, Vol.2018 (110), p.1-24
Hauptverfasser: Vagif S. Guliyev, Aysel A. Ahmadli, Mehriban N. Omarova, Lubomira G. Softova
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show continuity in generalized Orlicz-Morrey spaces $M_{\Phi,\varphi}(\mathbb{R}^n)$ of sublinear integral operators generated by Calderon-Zygmund operator and their commutators with BMO functions. The obtained estimates are used to study global regularity of the solution of the Dirichlet problem for linear uniformly elliptic operator $\mathcal{L}=\sum_{i,j=1}^n a^{ij}(x)D_{ij}$ with discontinuous coefficients. We show that $\mathcal{L} u\in M_{\Phi,\varphi}$ implies the second-order derivatives belong to $M_{\Phi,\varphi}$.
ISSN:1072-6691