Quantum energetics of a noncommuting measurement

When a measurement observable does not commute with a quantum system's Hamiltonian, the energy of the measured system is typically not conserved during the measurement. Instead, energy can be transferred between the measured system and the meter. In this work, we experimentally investigate the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review research 2024-07, Vol.6 (3), p.033045, Article 033045
Hauptverfasser: Linpeng, Xiayu, Piccione, Nicolò, Maffei, Maria, Bresque, Léa, Prasad, Samyak P., Jordan, Andrew N., Auffèves, Alexia, Murch, Kater W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When a measurement observable does not commute with a quantum system's Hamiltonian, the energy of the measured system is typically not conserved during the measurement. Instead, energy can be transferred between the measured system and the meter. In this work, we experimentally investigate the energetics of noncommuting measurements in a circuit quantum electrodynamics system containing a transmon qubit embedded in a 3D microwave cavity. We show through spectral analysis of the cavity photons that a frequency shift is imparted on the probe, in balance with the associated energy changes of the qubit. Our experiment provides new insights into foundations of quantum measurement, as well as a better understanding of the key mechanisms at play in quantum energetics.
ISSN:2643-1564
2643-1564
DOI:10.1103/PhysRevResearch.6.033045