Characterization of allosteric modulators that disrupt androgen receptor co-activator protein-protein interactions to alter transactivation-Drug leads for metastatic castration resistant prostate cancer

Three series of compounds were prioritized from a high content screening campaign that identified molecules that blocked dihydrotestosterone (DHT) induced formation of Androgen Receptor (AR) protein-protein interactions (PPIs) with the Transcriptional Intermediary Factor 2 (TIF2) coactivator and als...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SLAS discovery 2023-10, Vol.28 (7), p.325-343
Hauptverfasser: Fancher, Ashley T, Hua, Yun, Close, David A, Xu, Wei, McDermott, Lee A, Strock, Christopher J, Santiago, Ulises, Camacho, Carlos J, Johnston, Paul A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Three series of compounds were prioritized from a high content screening campaign that identified molecules that blocked dihydrotestosterone (DHT) induced formation of Androgen Receptor (AR) protein-protein interactions (PPIs) with the Transcriptional Intermediary Factor 2 (TIF2) coactivator and also disrupted preformed AR-TIF2 PPI complexes; the hydrobenzo-oxazepins (S1), thiadiazol-5-piperidine-carboxamides (S2), and phenyl-methyl-indoles (S3). Compounds from these series inhibited AR PPIs with TIF2 and SRC-1, another p160 coactivator, in mammalian 2-hybrid assays and blocked transcriptional activation in reporter assays driven by full length AR or AR-V7 splice variants. Compounds inhibited the growth of five prostate cancer cell lines, with many exhibiting differential cytotoxicity towards AR positive cell lines. Representative compounds from the 3 series substantially reduced both endogenous and DHT-enhanced expression and secretion of the prostate specific antigen (PSA) cancer biomarker in the C4-2 castration resistant prostate cancer (CRPC) cell line. The comparatively weak activities of series compounds in the H -DHT and/or TIF2 box 3 LXXLL-peptide binding assays to the recombinant ligand binding domain of AR suggest that direct antagonism at the orthosteric ligand binding site or AF-2 surface respectively are unlikely mechanisms of action. Cellular enhanced thermal stability assays (CETSA) indicated that compounds engaged AR and reduced the maximum efficacy and right shifted the EC of DHT-enhanced AR thermal stabilization consistent with the effects of negative allosteric modulators. Molecular docking of potent representative hits from each series to AR structures suggest that S1-1 and S2-6 engage a novel binding pocket (BP-1) adjacent to the orthosteric ligand binding site, while S3-11 occupies the AR binding function 3 (BF-3) allosteric pocket. Hit binding poses indicate spaces and residues adjacent to the BP-1 and BF-3 pockets that will be exploited in future medicinal chemistry optimization studies. Small molecule allosteric modulators that prevent/disrupt AR PPIs with coactivators like TIF2 to alter transcriptional activation in the presence of orthosteric agonists might evade the resistance mechanisms to existing prostate cancer drugs and provide novel starting points for medicinal chemistry lead optimization and future development into therapies for metastatic CRPC.
ISSN:2472-5552
2472-5560
2472-5560
DOI:10.1016/j.slasd.2023.08.001