The GLP-1 Analogue Exenatide Improves Hepatic and Muscle Insulin Sensitivity in Diabetic Rats: Tracer Studies in the Basal State and during Hyperinsulinemic-Euglycemic Clamp
Objective. Glucagon-like peptide-1 (GLP-1) analogues (e.g., exenatide) increase insulin secretion in diabetes but less is known about their effects on glucose production or insulin-stimulated glucose uptake in peripheral tissues. Methods. Four groups of Sprague-Dawley rats were studied: nondiabetic...
Gespeichert in:
Veröffentlicht in: | Journal of Diabetes Research 2014-01, Vol.2014 (2014), p.1-10 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objective. Glucagon-like peptide-1 (GLP-1) analogues (e.g., exenatide) increase insulin secretion in diabetes but less is known about their effects on glucose production or insulin-stimulated glucose uptake in peripheral tissues. Methods. Four groups of Sprague-Dawley rats were studied: nondiabetic (control, C); nondiabetic + exenatide (C + E); diabetic (D); diabetic + exenatide (D + E) with diabetes induced by streptozotocin and high fat diet. Infusion of 3-3H-glucose and U-13C-glycerol was used to measure basal rates of appearance ( R a ) of glucose and glycerol and gluconeogenesis from glycerol (GNG). During hyperinsulinemic-euglycemic clamp, glucose uptake into gastrocnemius muscles was measured with 2-deoxy-D-14C-glucose. Results. In the diabetic rats, exenatide reduced the basal R a of glucose ( P < 0.01 ) and glycerol ( P < 0.01 ) and GNG ( P < 0.001 ). During the clamp, R a of glucose was also reduced, whereas the rate of disappearance of glucose increased and there was increased glucose uptake into muscle ( P < 0.01 ) during the clamp. In the nondiabetic rats, exenatide had no effect. Conclusion. In addition to its known effects on insulin secretion, administration of the GLP-1 analogue, exenatide, is associated with increased inhibition of gluconeogenesis and improved glucose uptake into muscle in diabetic rats, implying improved hepatic and peripheral insulin sensitivity. |
---|---|
ISSN: | 2314-6745 2314-6753 |
DOI: | 10.1155/2014/524517 |