The Fuzzy u-Chart for Sustainable Manufacturing in the Vietnam Textile Dyeing Industry
The inevitability of measurement errors and/or humans of subjectivity in data collection processes make accumulated data imprecise, and are thus called fuzzy data. To adapt to this fuzzy domain in a manufacturing process, a traditional u control chart for monitoring the average number of nonconformi...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2017-07, Vol.9 (7), p.116 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The inevitability of measurement errors and/or humans of subjectivity in data collection processes make accumulated data imprecise, and are thus called fuzzy data. To adapt to this fuzzy domain in a manufacturing process, a traditional u control chart for monitoring the average number of nonconformities per unit is required to extend. In this paper, we first generalize the u chart, named fuzzy u-chart, whose control limits are built on the basis of resolution identity, which is a well-known fuzzy set theory. Then, an approach to fuzzy-logic reasoning, incorporating the decision-maker’s varying levels of optimism towards the online process, is proposed to categorize the manufacturing conditions. In addition, we further develop a condition-based classification mechanism, where the process conditions can be discriminated into intermittent states between in-control and out-of-control. As anomalous conditions are monitored to some extent, this condition-based classification mechanism can provide the critical information to deliberate the cost of process intervention with respect to the gain of quality improvement. Finally, the proposed fuzzy u-chart is implemented in the Vietnam textile dyeing industry to replace its conventional u-chart. The results demonstrate that the industry can effectively evade unnecessary adjustments to its current processes; thus, the industry can substantially reduce its operational cost and potential loss. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym9070116 |