RAS at the Golgi antagonizes malignant transformation through PTPRκ-mediated inhibition of ERK activation

RAS GTPases are frequently mutated in human cancer. H- and NRAS isoforms are distributed over both plasma-membrane and endomembranes, including the Golgi complex, but how this organizational context contributes to cellular transformation is unknown. Here we show that RAS at the Golgi is selectively...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-09, Vol.9 (1), p.3595-17, Article 3595
Hauptverfasser: Casar, Berta, Badrock, Andrew P., Jiménez, Iñaki, Arozarena, Imanol, Colón-Bolea, Paula, Lorenzo-Martín, L. Francisco, Barinaga-Rementería, Irene, Barriuso, Jorge, Cappitelli, Vincenzo, Donoghue, Daniel J., Bustelo, Xosé R., Hurlstone, Adam, Crespo, Piero
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RAS GTPases are frequently mutated in human cancer. H- and NRAS isoforms are distributed over both plasma-membrane and endomembranes, including the Golgi complex, but how this organizational context contributes to cellular transformation is unknown. Here we show that RAS at the Golgi is selectively activated by apoptogenic stimuli and antagonizes cell survival by suppressing ERK activity through the induction of PTPRκ, which targets CRAF for dephosphorylation. Consistently, in contrast to what occurs at the plasma-membrane, RAS at the Golgi cannot induce melanoma in zebrafish. Inactivation of PTPRκ, which occurs frequently in human melanoma, often coincident with TP53 inactivation, accelerates RAS-ERK pathway-driven melanomagenesis in zebrafish. Likewise, tp53 disruption in zebrafish facilitates oncogenesis driven by RAS from the Golgi complex. Thus, RAS oncogenic potential is strictly dependent on its sublocalization, with Golgi complex-located RAS antagonizing tumor development. RAS isoforms are associated with the plasma membrane and endomembranes, but how their localization contributes to tumorigenesis is unclear. Here, the authors show that RAS signals from Golgi complex antagonize tumour formation by inducing apoptosis via ERK inhibition.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-05941-8