Annexin A2 in Inflammation and Host Defense

Annexin A2 (AnxA2) is a multifunctional calcium (Ca ) and phospholipid-binding protein that is expressed in a wide spectrum of cells, including those participating in the inflammatory response. In acute inflammation, the interaction of AnxA2 with actin and adherens junction VE-cadherins underlies it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cells (Basel, Switzerland) Switzerland), 2020-06, Vol.9 (6), p.1499
Hauptverfasser: Dallacasagrande, Valentina, Hajjar, Katherine A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Annexin A2 (AnxA2) is a multifunctional calcium (Ca ) and phospholipid-binding protein that is expressed in a wide spectrum of cells, including those participating in the inflammatory response. In acute inflammation, the interaction of AnxA2 with actin and adherens junction VE-cadherins underlies its role in regulating vascular integrity. In addition, its contribution to endosomal membrane repair impacts several aspects of inflammatory regulation, including lysosome repair, which regulates inflammasome activation, and autophagosome biogenesis, which is essential for macroautophagy. On the other hand, AnxA2 may be co-opted to promote adhesion, entry, and propagation of bacteria or viruses into host cells. In the later stages of acute inflammation, AnxA2 contributes to the initiation of angiogenesis, which promotes tissue repair, but, when dysregulated, may also accompany chronic inflammation. AnxA2 is overexpressed in malignancies, such as breast cancer and glioblastoma, and likely contributes to cancer progression in the context of an inflammatory microenvironment. We conclude that annexin AnxA2 normally fulfills a spectrum of anti-inflammatory functions in the setting of both acute and chronic inflammation but may contribute to disease states in settings of disordered homeostasis.
ISSN:2073-4409
2073-4409
DOI:10.3390/cells9061499