Vacuum UV (VUV) Photo-Oxidation of Polyethersulfone (PES)

International need for water quality is placing a high demand on separation technology to develop advanced oxidative processes for polyethersulfone (PES) membranes to help improve water purification. Therefore, VUV photo-oxidation with a low pressure Ar plasma was studied to improve the hydrophilici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Technologies (Basel) 2022-04, Vol.10 (2), p.49
Hauptverfasser: Oakes, Sarah, Keeley, Ryan, Heineman, Hunter, Allston, Tom, Shertok, Joel, Mehan, Michael, Thompson, Gregory K., Takacs, Gerald A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:International need for water quality is placing a high demand on separation technology to develop advanced oxidative processes for polyethersulfone (PES) membranes to help improve water purification. Therefore, VUV photo-oxidation with a low pressure Ar plasma was studied to improve the hydrophilicity of PES by flowing oxygen over the surface during treatment. X-ray photoelectron spectroscopy (XPS) detected a decrease in the C at% (4.4 ± 1.7 at%), increase in O at% (3.7 ± 1.0 at%), and a constant S at% (5.4 ± 0.2 at%). Curve fitting of the XPS spectra showed a decrease in sp2 C-C aromatic group bonding, and an increase in C-O, C-S, O=C-OH, sulphonate (-SO3) and sulphate (-SO4) functional groups with treatment time. The water contact angle decreased from 71.9° for untreated PES down to a saturation level of 41.9° with treatment. Since scanning electron microscopy (SEM) showed no major changes in surface roughness, the increase in hydrophilicity was mainly due to oxidation of the surface. Washing the VUV photo-oxidized PES samples with water or ethanol increased the water contact angle saturation level up to 66° indicating the formation of a weak boundary layer.
ISSN:2227-7080
2227-7080
DOI:10.3390/technologies10020049