Coastal Upwelling Front Detection off Central Chile (36.5–37°S) and Spatio-Temporal Variability of Frontal Characteristics
In Eastern Boundary Upwelling Systems, cold coastal waters are separated from offshore by a strong cross-shore Sea Surface Temperature (SST) gradient zone. This upwelling front plays a major role for the coastal ecosystem. This paper proposes a method to automatically identify the front and define i...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2018-04, Vol.10 (5), p.690 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In Eastern Boundary Upwelling Systems, cold coastal waters are separated from offshore by a strong cross-shore Sea Surface Temperature (SST) gradient zone. This upwelling front plays a major role for the coastal ecosystem. This paper proposes a method to automatically identify the front and define its main characteristics (position, width, and intensity) from high resolution data. The spatio-temporal variability of the front characteristics is then analyzed in a region off Central Chile (37°S), from 2003 to 2016. The front is defined on daily 1 km-resolution SST maps by isotherm T0 with T0 computed from mean SST with respect to the distance from the coast. The probability of detecting a front, as well as the front width and intensity are driven by coastal wind conditions and increased over the 2007-2016 period compared to the 2003-2006 period. The front position, highly variable, is related to the coastal jet configuration and does not depend on the atmospheric forcing. This study shows an increase by 14% in the probability of detecting a front and also an intensification by 17% of the cross-front SST difference over the last 14 years. No trend was found in the front position. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs10050690 |