On q-steepest descent method for unconstrained multiobjective optimization problems

The q-gradient is the generalization of the gradient based on the q-derivative. The q-version of the steepest descent method for unconstrained multiobjective optimization problems is constructed and recovered to the classical one as q equals 1. In this method, the search process moves step by step f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS Mathematics 2020-01, Vol.5 (6), p.5521-5540
Hauptverfasser: Keung Lai, Kin, Kant Mishra, Shashi, Panda, Geetanjali, Abu Talhamainuddin Ansary, Md, Ram, Bhagwat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The q-gradient is the generalization of the gradient based on the q-derivative. The q-version of the steepest descent method for unconstrained multiobjective optimization problems is constructed and recovered to the classical one as q equals 1. In this method, the search process moves step by step from global at the beginning to particularly neighborhood at last. This method does not depend upon a starting point. The proposed algorithm for finding critical points is verified in the numerical examples. Keywords: multiobjective; q-calculus; steepest descent; pareto optimality; critical point; algorithms Mathematics Subject Classification: 90C29, 05A30, 34M60, 58E17, 90C53, 11Y16
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2020354