On the Convergence Rate of Kernel-Based Sequential Greedy Regression
A kernel-based greedy algorithm is presented to realize efficient sparse learning with data-dependent basis functions. Upper bound of generalization error is obtained based on complexity measure of hypothesis space with covering numbers. A careful analysis shows the error has a satisfactory decay ra...
Gespeichert in:
Veröffentlicht in: | Abstract and Applied Analysis 2012-01, Vol.2012 (1), p.1199-1207-477 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A kernel-based greedy algorithm is presented to realize efficient sparse learning with data-dependent basis functions. Upper bound of generalization error is obtained based on complexity measure of hypothesis space with covering numbers. A careful analysis shows the error has a satisfactory decay rate under mild conditions. |
---|---|
ISSN: | 1085-3375 1687-0409 |
DOI: | 10.1155/2012/619138 |