Use of rice husk for the removal of methylene blue in fixed-bed columns

This work shows the use of rice husk in the removal of cationic dye methylene blue on continuous system. A factorial design 23 with center points and random distribution was implemented to evaluate the correlation of the experimental factors in the adsorption process. The considered variables were p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tecno - Lógicas (Instituto Tecnológico Metropolitano) 2014-08, Vol.17 (33), p.43-54
Hauptverfasser: Yurany A. Villada-Villada, Angelina Hormaza-Anaguano, Natalia Casis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work shows the use of rice husk in the removal of cationic dye methylene blue on continuous system. A factorial design 23 with center points and random distribution was implemented to evaluate the correlation of the experimental factors in the adsorption process. The considered variables were pH, particle size, salt presence, flow rate, dye initial concentration, and bed depth. The samples were analyzed in defined time intervals. The amount of removed dye was quantified by UV spectroscopy - Visible. Adams-Bohart, Thomas and BDST (Bed-depht/service time analysis) models were used to predict the breakthrough curves using non-linear regression and establish the characteristic parameters of the process. It was found that the transference of dye toward the adsorbent is favored by a basic pH, a small particle size, low flow rate and dye concentration, and high bed depth. The design of experiments established that the initial dye concentration and the bed depth were the most significant factors. Regarding the models, the Thomas provided the best fit to describe the breakthrough curves in experimental conditions and Adams-Bohart was found suitable for dynamic behavior limited to the initial part. Finally, BDST model exhibited a good correlation and allowed to establish that bed depth is a determinant factor for scaling process.
ISSN:0123-7799
2256-5337