Multi-Condition Intelligent Fault Diagnosis Based on Tree-Structured Labels and Hierarchical Multi-Granularity Diagnostic Network
The aim of this study is to improve the cross-condition domain adaptability of bearing fault diagnosis models and their diagnostic performance under previously unknown conditions. Thus, this paper proposes a multi-condition adaptive bearing fault diagnosis method based on multi-granularity data anno...
Gespeichert in:
Veröffentlicht in: | Machines (Basel) 2024-12, Vol.12 (12), p.891 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this study is to improve the cross-condition domain adaptability of bearing fault diagnosis models and their diagnostic performance under previously unknown conditions. Thus, this paper proposes a multi-condition adaptive bearing fault diagnosis method based on multi-granularity data annotation. A tree-structured labeling scheme is introduced to allow for multi-granularity fault annotation. A hierarchical multi-granularity diagnostic network is designed to automatically learn multi-level fault information from condition data using feature extractors of varying granularity, allowing for the extraction of shared fault information across conditions. Additionally, a multi-granularity fault loss function is developed to help the deep network learn tree-structured labels, improving intra-class compactness and reducing hierarchical similarity between classes. Two experimental cases demonstrate that the proposed method exhibits robust cross-condition domain adaptability and performs better in unseen conditions than state-of-the-art methods. |
---|---|
ISSN: | 2075-1702 2075-1702 |
DOI: | 10.3390/machines12120891 |