Nonexistence of stable solutions for quasilinear Schrödinger equation

In this paper, we study the nonexistence of stable solutions for the quasilinear Schrödinger equation 0.1 − Δ u − [ Δ ( 1 + u 2 ) 1 / 2 ] u 2 ( 1 + u 2 ) 1 / 2 = h ( x ) | u | q − 1 u , x ∈ R N , where N ≥ 3 , q ≥ 5 / 2 and the function h ( x ) is continuous and positive in R N . Under suitable assu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boundary value problems 2018-11, Vol.2018 (1), p.1-11, Article 168
Hauptverfasser: Chen, Lijuan, Chen, Caisheng, Yang, Hongwei, Song, Hongxue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the nonexistence of stable solutions for the quasilinear Schrödinger equation 0.1 − Δ u − [ Δ ( 1 + u 2 ) 1 / 2 ] u 2 ( 1 + u 2 ) 1 / 2 = h ( x ) | u | q − 1 u , x ∈ R N , where N ≥ 3 , q ≥ 5 / 2 and the function h ( x ) is continuous and positive in R N . Under suitable assumptions on h ( x ) and q , we prove that Eq. ( 0.1 ) has no nonnegative and stable solutions.
ISSN:1687-2770
1687-2762
1687-2770
DOI:10.1186/s13661-018-1087-7