Boron-mediated directed aromatic C–H hydroxylation

Transition metal-catalysed C–H hydroxylation is one of the most notable advances in synthetic chemistry during the past few decades and it has been widely employed in the preparation of alcohols and phenols. The site-selective hydroxylation of aromatic C–H bonds under mild conditions, especially in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-03, Vol.11 (1), p.1316-1316, Article 1316
Hauptverfasser: Lv, Jiahang, Zhao, Binlin, Yuan, Yu, Han, Ying, Shi, Zhuangzhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transition metal-catalysed C–H hydroxylation is one of the most notable advances in synthetic chemistry during the past few decades and it has been widely employed in the preparation of alcohols and phenols. The site-selective hydroxylation of aromatic C–H bonds under mild conditions, especially in the context of substituted (hetero)arenes with diverse functional groups, remains a challenge. Here, we report a general and mild chelation-assisted C–H hydroxylation of (hetero)arenes mediated by boron species without the use of any transition metals. Diverse (hetero)arenes bearing amide directing groups can be utilized for ortho C–H hydroxylation under mild reaction conditions and with broad functional group compatibility. Additionally, this transition metal-free strategy can be extended to synthesize C7 and C4-hydroxylated indoles. By utilizing the present method, the formal synthesis of several phenol intermediates to bioactive molecules is demonstrated. Transition metal-catalysed C–H hydroxylation is one of the most notable synthetic advances to access alcohols and phenols. Here, the authors report a metal-free, mild C–H hydroxylation of (hetero)arenes via boron-mediated chelation.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-15207-x