Development of DNA aptamer selection approach based on membrane ultrafiltration of aptamer/target complex
Background. Aptamers are small single-stranded DNA or RNA molecules that have an affinity for a specific target molecule. The main method of aptamers construction is the technology of systematic evolution of ligands with exponential enrichment (SELEX). However, the exact approach depends on the natu...
Gespeichert in:
Veröffentlicht in: | Acta biomedica scientifica 2022-12, Vol.7 (6), p.119-127 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background.
Aptamers are small single-stranded DNA or RNA molecules that have an affinity for a specific target molecule. The main method of aptamers construction is the technology of systematic evolution of ligands with exponential enrichment (SELEX). However, the exact approach depends on the nature of target molecules, and is selected and optimized by each researcher independently. The article describes the technique of production of aptamers to the tick-borne encephalitis virus (TBEV) using membrane ultrafiltration with a molecular weight cut-off of 100 kDa. As a result, the pool of aptamers with observable affinity for TBEV is successfully selected and enriched.
The aim.
To develop the technique suitable for selection of specific DNA aptamers to a live, crude TBEV suspension directly in cell culture supernatant.
Materials and methods.
The selection of aptamers was carried out using a modified SELEX DNA aptamer technology in combination with semipermeable membrane ultrafiltration using Vivaspin 6 (Sartorius, Germany) concentrators of molecular weight cut-off of 100 kDa. Enrichment of a specific pool of aptamers was performed using real time polymerase chain reaction. Aptamers were sequenced with automated Sanger sequencing method. The direct virucidal effect of the aptamers was determined by the decrease in the titer of the infectious virus after incubation with the aptamer.
Results.
The pool of aptamers to TBEV was selected and enriched. This aptamer pool expressed affinity both to the infectious TBEV and to the TBEV antigen. Sixteen aptamers were sequenced from this pool and four of them were synthesized and tested for antiviral activity against TBEV. No antiviral activity was observed.
Conclusions.
The technique developed that can be successfully used to select aptamers to a live virus culture for the viruses comparable in size to TBEV or larger. |
---|---|
ISSN: | 2541-9420 2587-9596 |
DOI: | 10.29413/ABS.2022-7.6.12 |