Evaluation of Dietary Organic and Inorganic Mercury Threshold Levels on Induced Mercury Toxicity in a Marine Fish Model

Mercury as one of the most toxic elements can be present in organic or inorganic form in marine fishes, which may cause a potential threat to public health. In this study, we investigated to determine the dietary organic (O-Hg) and inorganic (I-Hg) mercury threshold levels on induced mercury toxicit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Animals (Basel) 2020-03, Vol.10 (3), p.405
Hauptverfasser: Raihan, Said Majdood, Moniruzzaman, Mohammad, Park, Youngjin, Lee, Seunghan, Bai, Sungchul C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mercury as one of the most toxic elements can be present in organic or inorganic form in marine fishes, which may cause a potential threat to public health. In this study, we investigated to determine the dietary organic (O-Hg) and inorganic (I-Hg) mercury threshold levels on induced mercury toxicity in juvenile olive flounder, as a marine fish model. Twenty-eight fish averaging 3.1 ± 0.05 g (mean ± SD) were arbitrarily assigned to each of 27 tanks. Each tank was arbitrarily restricted to triplicates of nine experimental diets for eight weeks. The experimental diets were manufactured to contain 0 (Control), 10 (I-Hg10, O-Hg10), 20 (I-Hg20, O-Hg20), 40 (I-Hg40, O-Hg40) and 160 (I-Hg160, O-Hg160) mg/kg diet in organic form as methylmercury (MeHg) or in inorganic form as mercuric chloride (HgCl ). At the termination of the experimental trial, weight gains (WGs) of fish fed the control and 10 (I-Hg10, O-Hg10) diets were remarkably higher than those of fish fed the 20 (I-Hg20, O-Hg20), 40 (I-Hg40, O-Hg40) and 160 (I-Hg160, O-Hg160) ( < 0.05). Specific growth rate and feed efficiency of fish fed control and 10 (I-Hg10, O-Hg10) diets were significantly higher than those of fish fed 40 (I-Hg40, O-Hg40) and 160 (I-Hg160, O-Hg160) diets. In comparison to the dietary inorganic mercury, dietary MeHg bioaccumulation rates were significantly higher in the tissue levels according to the dietary inclusion levels. MeHg accumulated mostly in kidney, followed by liver and gill tissues. HgCl accumulated in tissues, in decreasing order, liver > kidney > gills. A broken-line regression model for percentage of WG indicated that the threshold toxicity level for an Hg-incorporated diet of juvenile olive flounder could be 13.5 mg Hg/kg in the form of HgCl and 8.7 mg Hg/kg in the form of MeHg.
ISSN:2076-2615
2076-2615
DOI:10.3390/ani10030405