Brain Tumor Classification Using Conditional Segmentation with Residual Network and Attention Approach by Extreme Gradient Boost

A brain tumor is a tumor in the brain that has grown out of control, which is a dangerous condition for the human body. For later prognosis and treatment planning, the accurate segmentation and categorization of cancers are crucial. Radiologists must use an automated approach to identify brain tumor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-11, Vol.12 (21), p.10791
Hauptverfasser: Hashmi, Arshad, Osman, Ahmed Hamza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A brain tumor is a tumor in the brain that has grown out of control, which is a dangerous condition for the human body. For later prognosis and treatment planning, the accurate segmentation and categorization of cancers are crucial. Radiologists must use an automated approach to identify brain tumors, since it is an error-prone and time-consuming operation. This work proposes conditional deep learning for brain tumor segmentation, residual network-based classification, and overall survival prediction using structural multimodal magnetic resonance images (MRI). First, we propose conditional random field and convolution network-based segmentation, which identifies non-overlapped patches. These patches need minimal time to identify the tumor. If they overlap, the errors increase. The second part of this paper proposes residual network-based feature mapping with XG-Boost-based learning. In the second part, the main emphasis is on feature mapping in nonlinear space with residual features, since residual features reduce the chances of loss information, and nonlinear space mapping provides efficient tumor information. Features mapping learned by XG-Boost improves the structural-based learning and increases the accuracy class-wise. The experiment uses two datasets: one for two classes (cancer and non-cancer) and the other for three classes (meningioma, glioma, pituitary). The performance on both improves significantly compared to another existing approach. The main objective of this research work is to improve segmentation and its impact on classification performance parameters. It improves by conditional random field and residual network. As a result, two-class accuracy improves by 3.4% and three-class accuracy improves by 2.3%. It is enhanced with a small convolution network. So, we conclude in fewer resources, and better segmentation improves the results of brain tumor classification.
ISSN:2076-3417
2076-3417
DOI:10.3390/app122110791