2348 Lafora disease premature termination codons (PTCs) are likely candidates for suppression by aminoglycosides

OBJECTIVES/SPECIFIC AIMS: A small molecule therapy is within reach to treat a molecular mechanism known to result in thousands of fatal diseases. For 10% of patients with a genetic disease, a nonsense/STOP mutation/premature termination codon (PTC) is the underlying cause of their malady. PTCs prema...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical and translational science 2018-06, Vol.2 (S1), p.16-17
Hauptverfasser: Simmons, Zoe R., Sherwood, Amanda, Li, Selena, Garneau-Tsodikova, Sylvie, Gentry, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:OBJECTIVES/SPECIFIC AIMS: A small molecule therapy is within reach to treat a molecular mechanism known to result in thousands of fatal diseases. For 10% of patients with a genetic disease, a nonsense/STOP mutation/premature termination codon (PTC) is the underlying cause of their malady. PTCs prematurely stop protein synthesis and yield truncated proteins. Truncated proteins typically provide little to no proper function or activity and are rapidly degraded; thus, disease is imminent. Recent work has demonstrated that small molecules including aminoglycosides can cause the ribosome to readthrough these PTCs. Thus, PTC readthrough with small molecules is a very attractive approach for treating diseases caused by PTCs. Small molecules that promote readthrough act on the ribosome and induce a ribosomal conformational change. In this conformation, the PTC is not recognized by the translational machinery and an amino acid is incorporated into the growing peptide chain, thus protein synthesis continues and does not stop. The use of a single small molecule to readthrough various PTC mutations has been repeatedly effective for in vitro studies and some of these have progressed to clinical trials. Although there has been success in defining these small molecules, the field has discovered that every PTC is unique and likely requires a different small molecule. Thus, developing a cell culture model to test read-through of Lafora PTCs and the functionality of the protein product is the first step to developing a readthrough therapy for a LD. METHODS/STUDY POPULATION: Method for in vitro quantification of readthrough: 24 hours before transfection, HEK293 cells were split in 6-well plates. On the following day, approximately 60% confluence, the cells were transiently transfected with the WT or PTC mutated constructs using Polyethylenimine HCl MAX. Cells were transfected with a total amount of 0.35 μg DNA/well and 2 μl Polyethylenimine HCl MAX/well. Four hours later, the transfection medium was removed and replaced with fresh medium, without streptomycin and penicillin. The fresh media contained gentamicin diluted to the indicated concentration per well. Fresh gentamicin-containing medium was replaced after 24 hours. After 48 hours, lysates were collected in 100 μL mRIPA supplemented with protease inhibitors for each construct. The lysates were run on a western blot and the N -terminal was probed with anti-FLAG. A malachite green phosphatase assay to measure inorganic p
ISSN:2059-8661
2059-8661
DOI:10.1017/cts.2018.90