Two identities and closed-form formulas for the Bernoulli numbers in terms of central factorial numbers of the second kind

In this article, the authors present two identities involving products of the Bernoulli numbers, provide four alternative proofs for these two identities, derive two closed-form formulas for the Bernoulli numbers in terms of central factorial numbers of the second kind, and supply simple proofs of s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Demonstratio mathematica 2022-11, Vol.55 (1), p.822-830
Hauptverfasser: Chen, Xue-Yan, Wu, Lan, Lim, Dongkyu, Qi, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, the authors present two identities involving products of the Bernoulli numbers, provide four alternative proofs for these two identities, derive two closed-form formulas for the Bernoulli numbers in terms of central factorial numbers of the second kind, and supply simple proofs of series expansions of (hyperbolic) cosecant and cotangent functions.
ISSN:2391-4661
2391-4661
DOI:10.1515/dema-2022-0166