The Generalized Non-absolute type of sequence spaces
In this paper we introduce the notion of $\lambda_{mn}-\chi^{2}$ and $\Lambda^{2}$ sequences. Further, we introduce the spaces $\left[\chi^{2q\lambda}_{f\mu },\left\|\left(d\left(x_{1},0\right),d\left(x_{2},0\right),\cdots, d\left(x_{n-1},0\right)\right)\right\|_{p}\right]^{\textit{I}\left(F\right)}...
Gespeichert in:
Veröffentlicht in: | Boletim da Sociedade Paranaense de Matemática 2016-09, Vol.34 (2), p.263-274 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we introduce the notion of $\lambda_{mn}-\chi^{2}$ and $\Lambda^{2}$ sequences. Further, we introduce the spaces $\left[\chi^{2q\lambda}_{f\mu },\left\|\left(d\left(x_{1},0\right),d\left(x_{2},0\right),\cdots, d\left(x_{n-1},0\right)\right)\right\|_{p}\right]^{\textit{I}\left(F\right)}$ and $\left[\Lambda^{2q\lambda}_{f\mu },\left\|\left(d\left(x_{1},0\right),d\left(x_{2},0\right),\cdots, d\left(x_{n-1},0\right)\right)\right\|_{p}\right]^{\textit{I}\left(F\right)},$ which are of non-absolute type and we prove that these spaces are linearly isomorphic to the spaces $\chi^{2}$ and $\Lambda^{2},$ respectively. Moreover, we establish some inclusion relations between these spaces. |
---|---|
ISSN: | 0037-8712 2175-1188 |
DOI: | 10.5269/bspm.v34i1.25674 |