Traditional or adaptive design of experiments? A pilot-scale comparison on wood delignification
Traditional design of experiments and response surface methodology are widely used in engineering and process development. Bayesian optimization is an alternative machine learning approach that adaptively selects successive experimental conditions based on a predefined performance measure. Here we c...
Gespeichert in:
Veröffentlicht in: | Heliyon 2024-01, Vol.10 (2), p.e24484, Article e24484 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Traditional design of experiments and response surface methodology are widely used in engineering and process development. Bayesian optimization is an alternative machine learning approach that adaptively selects successive experimental conditions based on a predefined performance measure. Here we compared the two approaches using simulations and empirical experiments on alkaline wood delignification to identify important benefits and drawbacks of Bayesian optimization in the context of design of experiments. The simulations showed that the selection of initial experiments and measurement noise influenced the convergence of the Bayesian optimization algorithm to known optimal conditions. Both methods, however, showed comparable pilot-scale results on optimal digestion conditions, where high cellulose yields were combined with acceptable kappa numbers and pulp viscosities. Bayesian optimization did not enable a decrease in the number of experiments required for reaching these conditions but provided a more accurate model in the vicinity of the optimum based on additional modelling and cross-validation. These results shed light on the practical differences between the two methodologies for process development and are an important contribution to the chemometrics and machine learning communities.
[Display omitted] |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2024.e24484 |