Upgraded LHC experiments as a check of non-perturbative effects of the Electro-Weak Interaction
Recently reported diphoton excesse at LHC is interpreted to be connected with heavy WW zero spin resonances. The resonances appears due to the wouldbe anomalous triple interaction of the weak bosons, which is defined by coupling constant λ. The γγ 750GeV anomaly is considered to correspond to weak i...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently reported diphoton excesse at LHC is interpreted to be connected with heavy WW zero spin resonances. The resonances appears due to the wouldbe anomalous triple interaction of the weak bosons, which is defined by coupling constant λ. The γγ 750GeV anomaly is considered to correspond to weak isotopic spin 0 pseudoscalar state. We obtain estimates for the effect, which qualitatively agree with ATLAS data. Effects are predicted in a production of W+W−, (Z, γ)(Z, γ) via resonance XPS with MPS ≃ 750GeV, which could be reliably checked at the upgraded LHC at √s = 13TeV. In coupling constant of the triple anomalous interaction is estimated to be λ = −0.010 ± 0.005 in an agreement with existing restrictions. Specific predictions of the hypothesis are significant effects in decay channels XPS → γ l+ l−, XPS → l+ l− l+ l− (l = e, μ). |
---|---|
ISSN: | 2100-014X 2101-6275 2100-014X |
DOI: | 10.1051/epjconf/201612502002 |