Possibility of CO2 laser-pumped multi-millijoule-level ultrafast pulse terahertz sources
In the last decade, intense research has been witnessed on developing compact, terahertz (THz) driven electron accelerators, producing electrons with a sub-MeV—few tens of MeV energy. Such economical devices could be used in scientific and material research and medical treatments. However, until now...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2024-01, Vol.14 (1), p.999-999, Article 999 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the last decade, intense research has been witnessed on developing compact, terahertz (THz) driven electron accelerators, producing electrons with a sub-MeV—few tens of MeV energy. Such economical devices could be used in scientific and material research and medical treatments. However, until now, the extremely high-energy THz pulses needed by the THz counterparts of the microwave accelerators were generated by optical rectification (OR) of ultrafast Ti:sapphire or Yb laser pulses. These lasers, however, are not very effective. Because of this, we use numerical simulations to investigate the possibility of generating high-energy THz pulses by the OR of pulses produced by CO
2
lasers, which can have high plug-in efficiency. The results obtained supposing optical rectification (OR) in GaAs demonstrate that consideration of the self-phase-modulation (SPM) and the second-harmonic-generation (SHG) processes is indispensable in the design of CO
2
laser-based THz sources. More interestingly, although these two processes hinder achieving high laser-to-THz conversion efficiency, they can still surpass the 1.5% value, ensuring high system efficiency and making the CO
2
laser OR system a promising THz source. Our finding also has important implications for other middle-infrared laser-pumped OR-based THz sources. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-51139-4 |