Recent progress in the development of high-efficiency inverted perovskite solar cells
Perovskite solar cells (PSCs) have attracted much attention due to their low-cost fabrication and high power conversion efficiency (PCE). However, the long-term stability issues of PSCs remain a significant bottleneck impeding their commercialization. Inverted PSCs with a p-i-n architecture are bein...
Gespeichert in:
Veröffentlicht in: | NPG Asia materials 2023-05, Vol.15 (1), p.27-28, Article 27 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Perovskite solar cells (PSCs) have attracted much attention due to their low-cost fabrication and high power conversion efficiency (PCE). However, the long-term stability issues of PSCs remain a significant bottleneck impeding their commercialization. Inverted PSCs with a p-i-n architecture are being actively researched due to their concurrent good stability and decent efficiency. In particular, the PCE of inverted PSCs has improved significantly in recent years and is now almost approaching that of n-i-p PSCs. This review summarizes recent progress in the development of high-efficiency inverted PSCs, including the development of perovskite compositions, fabrication methods, and counter electrode materials (CEMs). Notably, we highlight the development of charge transport materials (CTMs) and the effects of defect passivation strategies on the performance of inverted PSCs. Finally, we discuss the remaining issues and perspectives of high-efficiency inverted PSCs.
Inverted perovskite solar cells (PSCs) with a p-i-n architecture are being actively researched due to their concurrent good stability and decent efficiency. In particular, the power conversion efficiency (PCE) of inverted PSCs has seen clear improvement in recent years and is now almost approaching that of n-i-p PSCs. Here, we systematically review recent progress in the development of high-efficiency inverted PSCs, and highlight the development of charge transport materials and the effects of defect passivation strategies on the performance of inverted PSCs, with the aim of providing constructive suggestions for the future development of inverted PSCs. |
---|---|
ISSN: | 1884-4057 1884-4049 1884-4057 |
DOI: | 10.1038/s41427-023-00474-z |