Cauchy hyper-graph Laplacian nonnegative matrix factorization for single-cell RNA-sequencing data analysis

Many important biological facts have been found as single-cell RNA sequencing (scRNA-seq) technology has advanced. With the use of this technology, it is now possible to investigate the connections among individual cells, genes, and illnesses. For the analysis of single-cell data, clustering is freq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics 2024-04, Vol.25 (1), p.169-169, Article 169
Hauptverfasser: Wang, Gao-Fei, Shen, Longying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many important biological facts have been found as single-cell RNA sequencing (scRNA-seq) technology has advanced. With the use of this technology, it is now possible to investigate the connections among individual cells, genes, and illnesses. For the analysis of single-cell data, clustering is frequently used. Nevertheless, biological data usually contain a large amount of noise data, and traditional clustering methods are sensitive to noise. However, acquiring higher-order spatial information from the data alone is insufficient. As a result, getting trustworthy clustering findings is challenging. We propose the Cauchy hyper-graph Laplacian non-negative matrix factorization (CHLNMF) as a unique approach to address these issues. In CHLNMF, we replace the measurement based on Euclidean distance in the conventional non-negative matrix factorization (NMF), which can lessen the influence of noise, with the Cauchy loss function (CLF). The model also incorporates the hyper-graph constraint, which takes into account the high-order link among the samples. The CHLNMF model's best solution is then discovered using a half-quadratic optimization approach. Finally, using seven scRNA-seq datasets, we contrast the CHLNMF technique with the other nine top methods. The validity of our technique was established by analysis of the experimental outcomes.
ISSN:1471-2105
1471-2105
DOI:10.1186/s12859-024-05797-4