Exploring the Impacts of Full-Scale Distribution System Orthophosphate Corrosion Control Implementation on the Microbial Ecology of Hydrologically Connected Urban Streams

Many cities across the nation are plagued by lead contamination in drinking water. As such, many drinking water utilities have undertaken lead service line (LSL) replacement to prevent further lead contamination. However, given the urgency of lead mitigation, and the socioeconomic challenges associa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbiology spectrum 2022-12, Vol.10 (6), p.e0215822
Hauptverfasser: Spencer-Williams, Isaiah, Balangoda, Anusha, Dabundo, Richard, Elliott, Emily, Haig, Sarah-Jane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many cities across the nation are plagued by lead contamination in drinking water. As such, many drinking water utilities have undertaken lead service line (LSL) replacement to prevent further lead contamination. However, given the urgency of lead mitigation, and the socioeconomic challenges associated with LSL replacement, cities have used phosphate-based corrosion inhibitors (i.e., orthophosphate) alongside LSL replacement. While necessary to ensure public health protection from lead contamination, the addition of orthophosphate into an aging and leaking drinking water system may increase the concentration of phosphate leaching into urban streams characterized by century-old failing water infrastructure. Such increases in phosphate availability may cascade into nutrient and microbial community composition shifts. The purpose of this study was to determine how this occurs and to understand whether full-scale distribution system orthophosphate addition impacts the microbial ecology of urban streams. Through monthly collection of water samples from five urban streams before and after orthophosphate addition, significant changes in microbial community composition (16S rRNA amplicon sequencing) and in the relative abundance of typical freshwater taxa were observed. In addition, key microbial phosphorus and nitrogen metabolism genes (e.g., two component regulatory systems) were predicted to change via BugBase. No significant differences in the absolute abundances of total bacteria, , and " Accumulibacter" were observed. Overall, the findings from this study provide further evidence that urban streams are compromised by unintentional hydrologic connections with drinking water infrastructure. Moreover, our results suggest that infiltration of phosphate-based corrosion inhibitors can impact urban streams and have important, as-yet-overlooked impacts on urban stream microbial communities. Elevated lead levels in drinking water supplies are a public health risk. As such, it is imperative for cities to urgently address lead contamination from aging drinking water supplies by way of lead service line replacements and corrosion control methods. However, when applying corrosion control methods, it is also important to consider the chemical and microbiological effects that can occur in natural settings, given that our water infrastructure is aging and more prone to leaks and breaks. Here, we examine the impacts on the microbial ecology of five urban stream systems befor
ISSN:2165-0497
2165-0497
DOI:10.1128/spectrum.02158-22