Oily Water Separation Process Using Hydrocyclone of Porous Membrane Wall: A Numerical Investigation

This research aims to study the process of separating water contaminated with oil using a hydrocyclone with a porous wall (membrane), containing two tangential inlets and two concentric outlets (concentrate and permeate), at the base of the equipment. For the study, the computational fluid dynamics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Membranes (Basel) 2021-01, Vol.11 (2), p.79
Hauptverfasser: Nunes, Sirlene A, Magalhães, Hortência L F, Gomez, Ricardo S, Vilela, Anderson F, Figueiredo, Maria J, Santos, Rosilda S, Rolim, Fagno D, Souza, Rodrigo A A, Farias Neto, Severino R de, Lima, Antonio G B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research aims to study the process of separating water contaminated with oil using a hydrocyclone with a porous wall (membrane), containing two tangential inlets and two concentric outlets (concentrate and permeate), at the base of the equipment. For the study, the computational fluid dynamics technique was used in a Eulerian-Eulerian approach to solve the mass and linear momentum conservation equations and the turbulence model. The effects of the concentration polarization layer thickness and membrane rejection coefficient on the permeate flow, hydrodynamic behavior of the fluids inside the hydrocyclone, and equipment performance were evaluated. Results of the velocity, transmembrane pressure and oil concentration profiles along the equipment, and hydrocyclone performance are presented and analyzed. The results confirmed the effect of the membrane rejection coefficient on the equipment performance and the high potential of the hydrocyclone with a porous wall to be used in the oil-water mixture separation.
ISSN:2077-0375
2077-0375
DOI:10.3390/membranes11020079